Integrase

Integrase Zinc binding domain
solution structure of the n-terminal zn binding domain of hiv-1 integrase (e form), nmr, 38 structures
Identifiers
Symbol Integrase_Zn
Pfam PF02022
InterPro IPR003308
SCOP 1wjb
Integrase core domain
crystal structure of rsv two-domain integrase
Identifiers
Symbol rve
Pfam PF00665
Pfam clan CL0219
InterPro IPR001584
SCOP 2itg
Integrase DNA binding domain
crystal structure of rsv two-domain integrase
Identifiers
Symbol IN_DBD_C
Pfam PF00552
InterPro IPR001037
SCOP 1ihw

Retroviral integrase (IN) is an enzyme produced by a retrovirus (such as HIV) that enables its genetic material to be integrated into the DNA of the infected cell. Retroviral INs are not to be confused with phage integrases, such as λ phage integrase (Int) (see site-specific recombination).

IN is a key component in the retroviral pre-integration complex (PIC).

Contents

Structure

All retroviral IN proteins contain three canonical domains, connected by flexible linkers:

Biochemical data and structural data suggest that retroviral IN functions as a tetramer (dimer-of-dimers). All three domains are important for multimerisation and viral DNA binding. Early in 2010, scientists announced that they had grown a crystal allowing detailed analysis of the structure of IN from prototype foamy virus (PFV) assembled on viral DNA ends.[2]

In addition, several host cellular proteins have been shown to interact with IN to facilitate the integration process. Human chromatin-associated protein LEDGF, which tightly binds HIV IN and directs HIV PIC towards highly-expressed genes for integration, is an example of such a host factor.

Function

Integration occurs following production of the double-stranded viral DNA by the viral RNA/DNA-dependent DNA polymerase reverse transcriptase.

The main function of IN is to insert the viral DNA into the host chromosomal DNA, a step that is essential for HIV replication. Integration is a point of no return for the cell, which becomes a permanent carrier of the viral genome (provirus). Integration is in part responsible for the persistence of retroviral infections. After integration, the viral gene expression and particle production may take place immediately or at some point in the future. The timing, it is presumed, depends on the activity of the chromosomal locus hosting the provirus.

Retroviral IN catalyzes two reactions:

Both reactions are catalysed by the same active site and occur via transesterification, without a covalent protein-DNA intermediate, in contrast to reactions catalysed by Ser and Tyr recombinases (see site specific recombination).

HIV IN

HIV integrase is a 32 kDa protein produced from the C-terminal portion of the Pol gene product, and is an attractive target for new anti-HIV drugs.

In November 2005, data from a phase 2 study of an investigational HIV integrase inhibitor, MK-0518, demonstrated that the compound has potent antiviral activity.[3][4] On October 12, 2007, the Food and Drug Administration (U.S.) approved the integrase inhibitor Raltegravir (MK-0518, brand name Isentress TM).[5] As of April 2008, this is the only integrase inhibitor approved for treating HIV Infection.

On February 1, 2010, it was reported that researchers at Imperial College London had solved a crucial puzzle about the AIDS virus after 20 years of research and that their findings could lead to better treatments for HIV.[6] This was accomplished by growing a crystal that revealed the structure of human foamy virus integrase. Elucidation of the HIV-1 integrase structure has been unsuccessful despite numerous efforts.

External links

References

  1. ^ Lodi PJ, Ernst JA, Kuszewski J, et al. (August 1995). "Solution structure of the DNA binding domain of HIV-1 integrase". Biochemistry 34 (31): 9826–33. doi:10.1021/bi00031a002. PMID 7632683. 
  2. ^ "Scientists say crack HIV/AIDS puzzle for drugs". Reuters. January 31, 2010. http://www.reuters.com/article/idUSLDE60T0F820100131?type=marketsNews. 
  3. ^ Morales-Ramirez JO, Teppler H, Kovacs C, et al. Antiretroviral effect of MK-0518, a novel HIV-1 integrase inhibitor, in ART-naïve HIV-1 infected patients. Program and abstracts of the 10th European AIDS Conference; November 17–20, 2005; Dublin, Ireland. Abstract LBPS1/6. Online summary: http://clinicaloptions.com/HIV/Conference%20Coverage/Dublin%202005/Capsules/LBPS1-6.aspx
  4. ^ Savarino A (December 2006). "A historical sketch of the discovery and development of HIV-1 integrase inhibitors". Expert Opin Investig Drugs 15 (12): 1507–22. doi:10.1517/13543784.15.12.1507. PMID 17107277. 
  5. ^ "FDA approves drug that fights HIV in new way - CNN.com". CNN. October 12, 2007. http://www.cnn.com/2007/HEALTH/10/12/hiv.drug/index.html#cnnSTCText. Retrieved May 5, 2010. 
  6. ^ Hare, Stephen; Saumya Shree Gupta, Eugene Valkov, Alan Engelman, Peter Cherepanov (11 March 2010). "Retroviral intasome assembly and inhibition of DNA strand transfer". Nature 464 (7286): 232–236. doi:10.1038/nature08784. http://www.nature.com/nature/journal/v464/n7286/full/nature08784.html.